Twitter Scrapper

VPN

  • No logs
  • Kill Switch
  • 6 devices
  • Monthly price: $4.92

Visit nordvpn.com

bisguzar/twitter-scraper: Scrape the Twitter Frontend … – GitHub

Read Korean Version
Twitter’s API is annoying to work with, and has lots of limitations — luckily their frontend (JavaScript) has it’s own API, which I reverse–engineered. No API rate limits. No restrictions. Extremely fast.
You can use this library to get the text of any user’s Tweets trivially.
Prerequisites
Before you begin, ensure you have met the following requirements:
Internet Connection
Python 3. 6+
Installing twitter-scraper
If you want to use latest version, install from source. To install twitter-scraper from source, follow these steps:
Linux and macOS:
git clone cd twitter-scraper
sudo python3 install
Also, you can install with PyPI.
pip3 install twitter_scraper
Using twitter_scraper
Just import twitter_scraper and call functions!
→ function get_tweets(query: str [, pages: int]) -> dictionary
You can get tweets of profile or parse tweets from hashtag, get_tweets takes username or hashtag on first parameter as string and how much pages you want to scan on second parameter as integer.
Keep in mind:
First parameter need to start with #, number sign, if you want to get tweets from hashtag.
pages parameter is optional.
Python 3. 7. 3 (default, Mar 26 2019, 21:43:19)
[GCC 8. 2. 1 20181127] on linux
Type “help”, “copyright”, “credits” or “license” for more information.
>>> from twitter_scraper import get_tweets
>>>
>>> for tweet in get_tweets(‘twitter’, pages=1):… print(tweet[‘text’])…
spooky vibe check

It returns a dictionary for each tweet. Keys of the dictionary;
Key
Type
Description
tweetId
string
Tweet’s identifier, visit to view tweet.
userId
Tweet’s userId
username
Tweet’s username
tweetUrl
Tweet’s URL
isRetweet
boolean
True if it is a retweet, False otherwise
isPinned
True if it is a pinned tweet, False otherwise
time
datetime
Published date of tweet
text
Content of tweet
replies
integer
Replies count of tweet
retweets
Retweet count of tweet
likes
Like count of tweet
entries
dictionary
Has hashtags, videos, photos, urls keys. Each one’s value is list
→ function get_trends() -> list
You can get the Trends of your area simply by calling get_trends(). It will return a list of strings.
>>> from twitter_scraper import get_trends
>>> get_trends()
[‘#WHUTOT’, ‘#ARSSOU’, ‘West Ham’, ‘#AtalantaJuve’, ‘#バビロニア’, ‘#おっさんずラブinthasky’, ‘Southampton’, ‘Valverde’, ‘#MMKGabAndMax’, ‘#23NParoNacional’]
→ class Profile(username: str) -> class instance
You can get personal information of a profile, like birthday and biography if exists and public. This class takes username parameter. And returns itself. Access informations with class variables.
>>> from twitter_scraper import Profile
>>> profile = Profile(‘bugraisguzar’)
>>> profile. location
‘Istanbul’
‘Buğra İşgüzar’
>>> ername
‘bugraisguzar’
→. to_dict() -> dict
to_dict is a method of Profile class. Returns profile datas as Python dictionary.
>>> profile = Profile(“bugraisguzar”)
>>> _dict()
{‘name’: ‘Buğra İşgüzar’, ‘username’: ‘bugraisguzar’, ‘birthday’: None, ‘biography’: ‘geliş[email protected]’, ‘website’: ”, ‘profile_photo’: ”, ‘banner_photo’: ”, ‘likes_count’: 2512, ‘tweets_count’: 756, ‘followers_count’: 483, ‘following_count’: 255, ‘is_verified’: False, ‘is_private’: False, user_id: “1019138658”}
Contributing to twitter-scraper
To contribute to twitter-scraper, follow these steps:
Fork this repository.
Create a branch with clear name: git checkout -b .
Make your changes and commit them: git commit -m ‘
Push to the original branch: git push origin /
Create the pull request.
Alternatively see the GitHub documentation on creating a pull request.
Contributors
Thanks to the following people who have contributed to this project:
@kennethreitz (author)
@bisguzar (maintainer)
@lionking6792
@ozanbayram
@xeliot
Contact
If you want to contact me you can reach me at @bugraisguzar.
License
This project uses the following license: MIT.
How to Scrape Tweets From Twitter | by Martin Beck - Towards ...

Datacenter proxies

  • HTTP & SOCKS
  • Price $1.3/IP
  • Locations: DE, RU, US
  • 5% OFF coupon: APFkysWLpG

Visit proxy6.net

How to Scrape Tweets From Twitter | by Martin Beck – Towards …

A Basic Twitter Scraping TutorialA quick introduction to scraping tweets from Twitter using PythonSocial media can be a gold mine of data in regards to consumer sentiment. Platforms such as Twitter lend themselves to holding useful information since users may post unfiltered opinions that are able to be retrieved with ease. Combining this with other internal company information can help with providing insight into the general sentiment people may have in regards to companies, products, tutorial is meant to be a quick straightforward introduction to scraping tweets from Twitter in Python using Tweepy’s Twitter API or Dmitry Mottl’s GetOldTweets3. To provide direction for this tutorial I decided to focus on scraping through two avenues: scraping a specific user’s tweets and scraping tweets from a general text to the interest in a non-coding solution for scraping tweets, my team is creating an application to fulfill that need. Yes, that means you don’t have to code to scrape data! We are currently in Alpha testing for our app Socialscrapr. If you want to participate or be contacted when the next testing phase is open please sign up for our mailing list below! TweepyBefore we get to the actual scraping it is important to understand what both of these libraries offer, so let’s breakdown the differences between the two to help you decide which one to is a Python library for accessing the Twitter API. There are several different types and levels of API access that Tweepy offers as shown here, but those are for very specific use cases. Tweepy is able to accomplish various tasks beyond just querying tweets as shown in the following picture. For the sake of relevancy, we will only focus on using this API to scrape of various functionality offered through Tweepy’s standard are limitations in using Tweepy for scraping tweets. The standard API only allows you to retrieve tweets up to 7 days ago and is limited to scraping 18, 000 tweets per a 15 minute window. However, it is possible to increase this limit as shown here. Also, using Tweepy you’re only able to return up to 3, 200 of a user’s most recent tweets. Using Tweepy is great for someone who is trying to make use of Twitter’s other functionality, making complex queries, or wants the most extensive information provided for each tOldTweets3UPDATE: DUE TO CHANGES IN TWITTER’S API GETOLDTWEETS3 IS NO LONGER FUNCTIONING. SNSCRAPE HAS BECOME A SUBSTITUTE AS A FREE LIBRARY YOU CAN USE TO SCRAPE BEYOND TWEEPY’S FREE LIMITATIONS. MY ARTICLE IS AVAILABLE HERE FOR tOldTweets3 was created by Dmitry Mottl and is an improvement fork of Jefferson Henrqiue’s GetOldTweets-python. It does not offer any of the other functionality that Tweepy has, but instead only focuses on querying tweets and does not have the same search limitations of Tweepy. This package allows you to retrieve a larger amount of tweets and tweets older than a week. However, it does not provide the extent of information that Tweepy has. The picture below shows all the information that is retrievable from tweets using this package. It is also worth noting that as of now, there is an open issue with accessing the geo data from a tweet using of information that is retrievable in GetOldTweet3’s tweet GetOldTweets3 is a great option for someone who’s looking for a quick no-frills way of scraping, or wants to work around the standard Tweepy API search limitations to scrape larger amount of tweets or tweets older than a they focus on very different things, both options are most likely sufficient for the bulk of what most people normally scrape for. It’s not until one is scraping with specific purposes in mind should one really have to choose between using either right, enough with the explanations. This is a scraping tutorial so let’s jump into the from PexelsUPDATE: I’ve written a follow-up article that does a deeper dive into how to pull more information from tweets like user information and refining queries for tweets such as searching for tweets by location. If you read this section and decide you need more, my follow-up article is available Jupyter Notebooks for the following section are available on my GitHub here. I created functions around exporting CSV files from these example are two parts to scraping with Tweepy because it requires Twitter developer credentials. If you already have credentials from a previous project then you can ignore this ining Credentials for TweepyIn order to receive credentials, you must apply to become a Twitter developer here. This does require that you have a Twitter account. The application will ask various questions about what sort of work you want to do. Don’t fret, these details don’t have to be extensive, and the process is relatively itter developer landing finishing the application, the approval process is relatively quick and shouldn’t take longer than a couple of days. Upon being approved you will need to log in and set up a dev environment in the developer dashboard and view that app’s details to retrieve your developer credentials as shown in the below picture. Unless you specifically have requested access to the other API’s offered, you will now be able to use the standard Tweepy developer raping Using TweepyGreat, you have your Twitter Developer credentials and can finally get started scraping some tting up Tweepy authorization:Before getting started you Tweepy will have to authorize that you have the credentials to utilize its API. The following code snippet is how one authorizes nsumer_key = “XXXXXXXXX”consumer_secret = “XXXXXXXXX”access_token = “XXXXXXXXX”access_token_secret = “XXXXXXXXX”auth = tweepy. OAuthHandler(consumer_key, consumer_secret)t_access_token(access_token, access_token_secret)api = (auth, wait_on_rate_limit=True)Scraping a specific Twitter user’s Tweets:The search parameters I focused on are id and count. Id is the specific Twitter user’s @ username, and count is the max amount of most recent tweets you want to scrape from the specific user’s timeline. In this example, I use the Twitter CEO’s @jack username and chose to scrape 100 of his most recent tweets. Most of the scraping code is relatively quick and straight ername = ‘jack’count = 150try: # Creation of query method using parameters tweets = (er_timeline, id=username)(count) # Pulling information from tweets iterable object tweets_list = [[eated_at,, ] for tweet in tweets] # Creation of dataframe from tweets list # Add or remove columns as you remove tweet information tweets_df = Frame(tweets_list)except BaseException as e: print(‘failed on_status, ‘, str(e)) (3)If you want to further customize your search you can view the rest of the search parameters available in the er_timeline method raping tweets from a text search query:The search parameters I focused on are q and count. q is supposed to be the text search query you want to search with, and count is again the max amount of most recent tweets you want to scrape from this specific search query. In this example, I scrape the 100 of the most recent tweets that were relevant to the 2020 US Election. text_query = ‘2020 US Election’count = 150try: # Creation of query method using parameters tweets = (, q=text_query)(count) # Pulling information from tweets iterable object tweets_list = [[eated_at,, ] for tweet in tweets] # Creation of dataframe from tweets list # Add or remove columns as you remove tweet information tweets_df = Frame(tweets_list) except BaseException as e: print(‘failed on_status, ‘, str(e)) (3)If you want to further customize your search you can view the rest of the search parameters available in the method other information from the tweet is accessible? One of the advantages of querying with Tweepy is the amount of information contained in the tweet object. If you’re interested in grabbing other information than what I chose in this tutorial you can view the full list of information available in Tweepy’s tweet object here. To show how easy it is to grab more information, in the following example I created a list of tweets with the following information: when it was created, the tweet id, the tweet text, the user the tweet is associated with, and how many favorites the tweet had at the time it was = (, q=text_query)(count)# Pulling information from tweets iterable tweets_list = [[eated_at,,,, tweet. favorite_count] for tweet in tweets]# Creation of dataframe from tweets listtweets_df = Frame(tweets_list)UPDATE: DUE TO CHANGES IN TWITTER’S API GETOLDTWEETS3 IS NO LONGER FUNCTIONING. MY ARTICLE IS AVAILABLE HERE FOR GetOldTweets3 does not require any authorization like Tweepy does, you just need to pip install the library and can get started right raping a specific Twitter user’s Tweets:The two variables I focused on are username and count. In this example, we scrape tweets from a specific user using the setUsername method and setting the amount of most recent tweets to view using ername = ‘jack’count = 2000# Creation of query objecttweetCriteria = eetCriteria(). setUsername(username)\. setMaxTweets(count)# Creation of list that contains all tweetstweets = tTweets(tweetCriteria)# Creating list of chosen tweet datauser_tweets = [[, ] for tweet in tweets]# Creation of dataframe from tweets listtweets_df = Frame(user_tweets)Scraping tweets from a text search query:The two variables I focused on are text_query and count. In this example, we scrape tweets found from a text query by using the setQuerySearch method. text_query = ‘USA Election 2020’count = 2000# Creation of query objecttweetCriteria = eetCriteria(). setQuerySearch(text_query)\. setMaxTweets(count)# Creation of list that contains all tweetstweets = tTweets(tweetCriteria)# Creating list of chosen tweet datatext_tweets = [[, ] for tweet in tweets]# Creation of dataframe from tweets listtweets_df = Frame(text_tweets)Queries can be further customized by combining TweetCriteria search parameters. All the current search parameters available are shown rrent TweetCriteria search parameters. Example of a query using several search parameters:The following stacked query will return 2, 000 tweets relevant to USA Election 2020 that were tweeted between January 1st 2019 and October 31st 2019. text_query = ‘USA Election 2020’since_date = ‘2019-01-01’until_date = ‘2019-10-31’count = 2000# Creation of query objecttweetCriteria = eetCriteria(). setQuerySearch(text_query). setSince(since_date). setUntil(until_date). setMaxTweets(count)# Creation of list that contains all tweetstweets = tTweets(tweetCriteria)# Creating list of chosen tweet datatext_tweets = [[, ] for tweet in tweets]# Creation of dataframe from tweets listtweets_df = Frame(text_tweets)If you want to reach out don’t be afraid to connect with me on LinkedInIf you’re interested, sign up for our Socialscrapr mailing list: follow up article that does a deeper dive into both packages: article that helps setup and provides a couple of example queries: containing this tutorial’s Twitter scraper’s: Tweepy’s standard API search limit: GitHub: GitHub:
Complete Tutorial On Twint: Twitter Scraping Without Twitter's API

Complete Tutorial On Twint: Twitter Scraping Without Twitter’s API

Web Scraping allows us to download data from different websites over the internet to our local system. It is data mining from different online portals using Hypertext Transfer Protocols and uses this data according to our requirements. Many companies use this for data harvesting and for creating search engine bots.
Python has a large variety of packages/modules that can help in the process of web scraping like beautiful soup, selenium. Several libraries are there which can automate the process of web scraping like Autoscraper. All these libraries use different APIs through which we can scrape data and store it into a data frame in our local gister for AWS Data & Analytics Conclave>>
Twint is an open-source python library that is used for twitter scraping i. e we can use twint in order to extract data from twitter and that too without using the twitter API. There are certain features of twint which makes it more useable and unique from other twitter scraping API, namely:
Twitter API has a limit of fetching only 3200(last) tweets while twint has no limit of downloading tweets, it can download almost all the to use and very initial Sign-in or Sign-up required for fetching data.
Twint can be used to scrape tweets using different parameters like hashtags, usernames, topics, etc. It can even extract information like phone number and email id’s from the tweets.
In this article, we will explore twint and see what different functionalities it offers for scraping data from twitter.
Implementation:
We will start by installing twint using pip install twint.
Importing required libraries
We will be scraping data from twitter using twint so we will import twint other than this we need to import net_asyncio which will handle all the notebook and runtime errors. Also, we will initiate the net_syncio in this step only.
import twint
import nest_asyncio
()
Configuring Twint
We need to scrape data from twitter using twint before that we need to configure the twint object and call it whenever required.
t = ()
Now let us start scraping different types of data from twitter.
Scraping Data
Followers on Twitter
Here, we will see how we can download the names of the followers of a particular user by using their username. Here I am using my own twitter username.
ername = “Himansh70809561”
(t)
Here you can see a list of my followers on twitter because I used my username, similarly, you can use the different usernames of different users and download the follower’s name.
Storing info to Dataframe
We can also store the information into a data frame. Let us see how to store the follower’s details in a data frame.
= 30
ername = ‘Analyticsindiam’
= True
follow_df =
Here we saw that the top 30 followers are stored in a data frame. We can set the number of followers to the desired number.
Extracting tweets with a particular word
Here we will try and extract all tweets which have a particular word in them which we define.
= “analytics”
ore_object = True
= 10
tlist = arch_tweet_list
print(tlist)
The output contains tweet from different users with their usernames and tweet along with the date when a tweet is published.
Tweets of a particular User
We can also extract tweets from different users by entering their username as the parameter.
= “from:@Analyticsindiam”
Here we can see some recent tweets from Analytics India Magazine along with their username and date on which they were published.
These are some of the ways with which we can extract data or scrape data from twitter using twint. Twint contributors are actively contributing to making it better and better day by day.
Conclusion:
In this article, we saw how we can use twint to extract data from twitter. We started with scraping the followers a person has on twitter further we saw how we can store them in a data frame. We also saw how to extract tweets with a particular string or tweets from a particular user. Twint is easy to easy and is blazingly fast with frequent updates.
Join Our Discord Server. Be part of an engaging online community. Join Here.
Subscribe to our Newsletter
Get the latest updates and relevant offers by sharing your email.
Himanshu SharmaAn aspiring Data Scientist currently Pursuing MBA in Applied Data Science, with an Interest in the financial markets. I have experience in Data Analytics, Data Visualization, Machine Learning, Creating Dashboards and Writing articles related to Data Science.

Frequently Asked Questions about twitter scrapper

Does Twitter allow scraping?

The standard API only allows you to retrieve tweets up to 7 days ago and is limited to scraping 18,000 tweets per a 15 minute window. However, it is possible to increase this limit as shown here. Also, using Tweepy you’re only able to return up to 3,200 of a user’s most recent tweets.

What is a twitter scraper?

23/09/2020. Web Scraping allows us to download data from different websites over the internet to our local system. It is data mining from different online portals using Hypertext Transfer Protocols and uses this data according to our requirements.Sep 23, 2020

How do I scrape twitter without API?

Scrape tweets without using the APISet up the scraper. If you don’t already have them, make sure to install the required repositories: $ pip3 install scrapy $ pip3 install pymongo. … Run the scraper. … Parsing the scrape results.Jul 11, 2017

Leave a Reply

Your email address will not be published. Required fields are marked *